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Differentiation between multiple 
sclerosis and neuromyelitis optica 
spectrum disorder using a deep 
learning model
Jin Myoung Seok 1,9, Wanzee Cho 2,9, Yeon Hak Chung 3,4, Hyunjin Ju 3,4, Sung Tae Kim 5, 
Joon‑Kyung Seong 2,6,7* & Ju‑Hong Min 3,4,8*

Multiple sclerosis (MS) and neuromyelitis optica spectrum disorder (NMOSD) are autoimmune 
inflammatory disorders of the central nervous system (CNS) with similar characteristics. The 
differential diagnosis between MS and NMOSD is critical for initiating early effective therapy. In this 
study, we developed a deep learning model to differentiate between multiple sclerosis (MS) and 
neuromyelitis optica spectrum disorder (NMOSD) using brain magnetic resonance imaging (MRI) data. 
The model was based on a modified ResNet18 convolution neural network trained with 5-channel 
images created by selecting five 2D slices of 3D FLAIR images. The accuracy of the model was 76.1%, 
with a sensitivity of 77.3% and a specificity of 74.8%. Positive and negative predictive values were 
76.9% and 78.6%, respectively, with an area under the curve of 0.85. Application of Grad-CAM to the 
model revealed that white matter lesions were the major classifier. This compact model may aid in the 
differential diagnosis of MS and NMOSD in clinical practice.

Multiple sclerosis (MS) and neuromyelitis optica spectrum disorder (NMOSD) are autoimmune inflammatory 
disorders of the central nervous system (CNS) that have similar clinical features1,2. A disease-specific autoan-
tibody targeting aquaporin-4 (AQP4 antibody) has been discovered in NMOSD, which can help differentiate 
NMOSD from MS3. However, the antibody assay has variable sensitivity4 and can produce false-negative results5,6; 
in addition, levels of antibody could decrease during NMOSD remission7,8. In terms of brain magnetic resonance 
imaging (MRI) lesions in MS and NMOSD, the presence of a lesion in the inferior temporal lobe or adjacent to 
the lateral ventricle, a U-fiber lesion, or a Dawson’s finger-type lesion are more suggestive of MS than NMOSD. In 
contrast, longitudinally extensive transverse myelitis, extensive hemispheric lesions, and periependymal lesions 
are observed mainly in NMOSD9,10. Nevertheless, differentiation between MS and NMOSD can still be chal-
lenging in specific clinical situations11.

Recent machine-learning algorithms have been applied clinically in various neurological diseases12. In CNS 
demyelinating disorders, various aspects of the diseases have been evaluated with machine-learning methods. 
Some authors have reported promising results applying machine learning methods to user-defined features 
including clinical characteristics, T2 lesion volume, regional gray matter volume, and regional fractional ani-
sotropy values to differentiate NMOSD from MS13. However, only a few studies have applied deep learning 
algorithms to differentiate NMOSD from MS14.

In this study, we aimed to develop a compact and robust deep learning model to differentiate MS and NMOSD 
using brain MRI data and offer visual explanations for the resulting classification.
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Results
Demographic and clinical features.  Eighty-six patients with MS and 70 patients with NMOSD were 
finally enrolled in this study; 199 MRI scans (86 baseline and 113 follow-up scans) from patients with MS and 
109 MRI scans (70 baseline and 39 follow-up scans) from patients with NMOSD were used for classification 
modeling (Table  1). MS patients were younger than patients with NMOSD (MS, 35.0 ± 9.9  years; NMOSD, 
43.9 ± 12.6 years; P < 0.001); at the time MRI scan, most of the MS patients (92.5%) were relapsing–remitting 
type MS (RRMS). Proportions of females were not significantly different between the two groups (MS, 72.1%; 
NMOSD, 85.7%; P = 0.063). All patients were seronegative for the myelin oligodendrocyte glycoprotein autoan-
tibody (MOG antibody), and most patients with NMOSD (66 of 70, 94.3%) were seropositive for the AQP4 
antibody. The neurologic disability at the time of the MRI scans in patients with NMOSD or MS were different; 
the NMOSD group demonstrated a higher EDSS score compared to that of the MS group (median EDSS score, 
2.5 vs. 1.0, respectively; P < 0.001).

Conventional MRI findings.  Mean disease duration at the time of MRI was 5.4 ± 5.4 years, which differed 
between the two diseases (MS, 5.8 ± 5.3 years; NMOSD, 4.8 ± 5.4 years; P = 0.020). Most MRI scans (74.7%) were 
performed during remission; 77.9% of MRI scans in MS patients and 68.8% in NMOSD patients were taken dur-
ing remission (P = 0.106). In MRI scans of NMOSD patients, 19.3% (N = 21/109) had normal findings, and 80.7% 
(N = 88/109) had abnormal findings. Based on the previous classification, 45.9% (N = 50/109) of MRI scans 
showed NMOSD-specific brain lesions, such as longitudinal corticospinal tracts lesions (10.1%, N = 11/109), 
extensive hemispheric lesions (14.7%, N = 16/109), periependymal lesions (38.5%, N = 42/109), and cervicome-
dullary lesions (5.5%, N = 6/109)15,16. NMOSD-specific brain lesions were observed in only 38.7% (N = 29/75) of 
MRI scans when we included only those MRI scans obtained during remission. Of the 199 MRI scans from the 
patients with MS, 164 (164/199 scans, 82.4%) scans met the Barkhof criteria, and 38 (38/198 scans, 19.2%; one 
MRI was excluded as it was taken without enhancement) scans showed T1 enhancing lesions; 25.0% (11/44) of 
MRI scans taken during the acute relapse phase showed T1 enhancing lesions which were identified in 17.5% 
(27/154) of the MRI scans taken during periods of remission.

Classification results.  We trained a ResNet-18 model that can take 5 channels as input for 25 epochs. 
We created a 5-channel 2D image by concatenating the selected five axial slices, which we used as input data. 
Group K-fold is a K-fold validation method that prevents multiple images of one patient from being included in 
some training set and other images from being included in the validation or test dataset. Batch size was 10, loss 
function was optimized using the Adam optimizer, and the learning rate was set to 5e−4. The weighted Cros-
sEntropyLoss function was applied to solve the imbalance of the images used. We only used augmented data 

Table 1.   Demographic characteristics of enrolled patients with multiple sclerosis and neuromyelitis optica 
spectrum disorder. MS, Multiple sclerosis; NMOSD, Neuromyelitis optica spectrum disorder; SD, Standard 
deviation; AQP4, Aquaporin-4; MRI, Magnetic resonance imaging; IQR, inter-quartile range; N/A, not 
applicable. a MOG antibody was negative for all enrolled patients. b A single MRI scan can have multiple 
findings. c One MRI scan was taken without enhancement.

Enrolled patients with MS
N = 86

Enrolled patients with NMOSD
N = 70 P value

Age, years (SD) 35.0 (9.9) 43.9 (12.6)  < 0.001

Female, n (%) 62 (72.1) 60 (85.7) 0.063

AQP4 antibody, n (%)a 0 (0) 66 (94.3)  < 0.001

Total number of MRI scans 199 109  < 0.001

 Baseline scans, n (%) 86 (43.2) 70 (64.2)

 Follow-up scans, n (%) 113 (56.8) 39 (35.8)

Disease duration at the time of MRI, years (SD) 5.8 (5.3) 4.8 (5.4) 0.020

EDSS at the time of MRI, median (IQR) 1.00 (0–2.5) 2.5 (1.5–4.0)  < 0.001

Clinical status at the time of MRI 0.106

 In acute relapse, n (%) 44 (22.1) 34 (31.2)

 In remission, n (%) 155 (77.9) 75 (68.8)

Characteristics of brain MRI in NMOSDb

 Normal MRI N/A 21 (19.3)

 Non-specific brain lesions N/A 38 (34.9)

 Longitudinal corticospinal tracts lesion, n (%) N/A 11 (10.1)

 Extensive hemispheric lesion, n (%) N/A 16 (14.7)

 Periependymal lesion, n (%) N/A 42 (38.5)

 Cervicomedullary lesion, n (%) N/A 6 (5.5)

Barkhof criteria fulfillment, n (%) 164 (82.4) N/A

Presence of T1 enhancing MS lesion, n (%)c 38/198 (19.2) N/A
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during model training, not for validation or testing. The test set was used to evaluate the ultimate performance 
of the model. To minimize the influence on the model’s assessment of cases where follow-up scans might not 
show any major differences or may greatly resemble the baseline scans, the test set consisted only of baseline 
images of patients without any follow-up images. From the pool of MRI scans of 34 MS patients and 46 NMOSD 
patients, all of whom had not undergone any follow-up scans, we randomly selected 15 MRI images from each 
group. Using a different random seed each time, we repeated this process 100 times. The classification results are 
presented in Table 2. The accuracy of this model in differentiating between NMOSD and MS was 76.1% (95% CI 
74.8–77.4) with a sensitivity of 77.3% (95% CI 74.4–80.3) and a specificity of 74.8% (95% CI 72.1–77.5). Positive 
predictive value (PPV) and negative predictive value (NPV) were 76.9% (95% CI 75.2–78.7) and 78.6% (95% CI 
76.7–80.6), with an area under the receiver operating characteristic (ROC) curve of 0.85 (95% CI 0.84–0.86).

Gradient‑weighted class activation map (Grad‑CAM).  We generated a gradient-weighted class acti-
vation map (Grad-CAM) to evaluate if the five 2D slices selected from the 3D fluid-attenuated inversion-recov-
ery (FLAIR) images represented lesions that could be used to distinguish between MS and NMOSD. Grad-CAM 
results are shown in Fig. 1. Areas with white matter lesions are highlighted in red, indicating that our ResNet-18 
model generated results by recognizing MS and NMOSD lesions in the images during the classification task.

Discussion
We developed a compact deep learning model with good accuracy and prediction using five axial slices of FLAIR 
brain MRI for differentiating MS and NMOSD. Further exploration of this model using Grad-CAM showed that 
white matter lesions were what the model focused on for classification.

Diagnosis of MS can be challenging if patients have atypical clinical presentations. Misdiagnosis of MS could 
cause patients to undergo hazardous treatment; MS therapies, including interferon beta or fingolimod, can 

Table 2.   Classification results of multiple sclerosis and neuromyelitis optica spectrum disorder using the 
proposed architecture. PPV, positive predictive value; NPV, negative predictive value; AUC, area under the 
curve. a Data have been calculated with 100 times experiments and presented with mean and 95% confidence 
interval.

Accuracy, % Sensitivity, % Specificity, % PPV NPV AUC​

Modela 76.1 (74.8–77.4) 77.3 (74.4–80.3) 74.8 (72.1–77.5) 76.9 (75.2–78.7) 78.6 (76.7–80.6) 0.85 (0.84–0.86)

Figure 1.   Application of Grad-CAM. (A) Grad-CAM results for MS input data, and (B) Grad-CAM results for 
NMOSD. The areas marked in red includes white matter lesions in MS and NMOSD. Grad-CAM, Gradient-
weighted Class Activation Map; MS, Multiple Sclerosis; NMOSD, Neuromyelitis Optica Spectrum Disorder.
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exacerbate NMOSD17,18. Serologic testing, which is the major diagnostic criterion for NMOSD, can help differ-
entiate MS from NMOSD, but there are still limitations in the availability of antibody testing, and seronegative 
cases exist. Misdiagnosis of MS is common, and revision of the McDonald criteria in 2017 raised concerns about 
misdiagnosis and emphasized the need for systematic identification of typical MRI features, but exclusion of 
alternative diagnoses is not standardized1,11,19,20. Characteristics of brain MRI lesions have also been studied to 
differentiate between MS and NMOSD. However, we showed that 10% of brain MRIs of patients with the onset 
of NMOSD met the MS MRI criteria, suggesting it may be challenging to distinguish NMOSD from MS based 
only on brain MRI at onset15. Previously, brain lesions characteristic of NMOSD were observed in 69% of patients 
with NMOSD during the disease course16. Other cross-sectional studies showed lower frequencies of NMOSD-
specific brain lesions: 50.9% in chronic phase European patients and 17.7% in chronic phase Chinese patients21,22. 
This indicates that lesions characteristic of NMOSD could be missed outside the acute phase and that different 
ethnic population, selection bias, or expert knowledge could affect accurate differentiation of the two disorders6,15. 
In our study, only 38.7% of MRI scans performed in the chronic phase showed NMOSD-specific brain lesions, 
suggesting that it might be challenging to distinguish NMOSD based on MRI in our study population.

Machine learning is an alternative approach to differentiating between NMOSD and MS. Efforts have been 
made to apply machine learning algorithms to differentiate between MS and NMOSD. Multiple modalities, 
including functional MRI, white matter lesions, gray matter measures, diffusion tensor imaging, cortical thick-
ness, and cognitive/clinical assessment, were used; a high accuracy of 74% to 84% was attained depending on 
modality, which can improve our understanding of the characteristics of the disease related to the modalities13,23. 
However, the models used were not fully automated and requiring expert evaluation and selection of the features.

Deep learning models can overcome these obstacles. Only two studies have applied deep learning-based 
methods to distinguish MS from NMOSD. One study reported 81.3% accuracy of differentiation between MS 
and NMOSD using hierarchical multimodal fusion models that integrated FLAIR and diffusion tensor imaging 
(DTI) sequences24; the other showed 71.1% accuracy using CNN integrated brain MRI and clinical data14. Our 
deep learning model used only five axial slices of FLAIR MRI data, and showed comparable accuracy (76.1%) 
with good sensitivity and specificity (77.3%, and 74.8%, respectively).

The deep learning model we used is the residual neural network (ResNet), which is a neural network widely 
used in the medical field25–28. ResNet architecture solves the issue of a relatively limited training dataset and 
enhances image classification performance by expanding the network’s depth. Skip connections are used by 
ResNet to alleviate degradation issues. Empirical evidence suggests that the training cost of 3D Convolutional 
neural networks (CNNs) is significantly greater than that of 2D CNNs as more trainable parameters necessitate 
longer training durations and more training data. The limited dataset size used in this study may potentially 
have impacted the function of 3D CNNs. Consequently, we employed ResNet 2D CNNs in our study. Data aug-
mentation is a technique for expanding the amount and quality of training datasets to improve the performance 
of deep learning models. Additionally, data augmentation involves adding missing data points to the initial 
training data29. Using this approach, we attempted to minimize potential issues associated with using the limited 
amount of FLAIR MRI data. This approach has been used in other studies; a classification task was performed 
with ResNet and data augmentation with flipping was found to enhance accuracy30,31, while a noisy augmented 
dataset offered superior classification accuracy on ResNet compared to the original dataset32.

The complexity of the learning process makes it challenging to interpret deep learning models33. Grad-CAM 
method can provide insight into how deep learning models classify images by facilitating localization of features 
that the deep learning model focuses on using a heatmap33,34; a deep learning model may distinguish between 
images in ways that are distinct from how humans do35. In this study, Grad-CAM revealed that the model focused 
on white matter lesions to differentiate between MS and NMOSD (Fig. 1). Unknown features of two diseases 
other than white matter lesions were not recognized with Grad-CAM; white matter lesions therefore appear to 
be an appropriate area for classification. Further deep learning models with large scale image data from MS and 
NMOSD could help discover new imaging characteristics.

This study has several limitations. First, this study was conducted with a relatively small number of MRIs in 
a single center without external validation, which limits generalization of our findings. Second, our model was 
trained for binary classification, and brain MRIs of healthy subjects were not included in this study. This could 
be a significant barrier when implementing this model in clinical settings. Third, the clinical state of the disease 
when MRI scans were performed was not controlled; 68.8% of MRI scans were taken in a chronic remission 
state. However, given that it may be more challenging to differentiate NMOSD in the chronic phase using MRI 
data than NMOSD in the acute phase, our findings suggest that this model is useful. Further investigations 
with extensive data are required to develop a fully automated deep learning model for the diagnosis of CNS 
demyelinating diseases.

In conclusion, we developed a compact deep learning model based on FLAIR brain MRI data with the ability 
to differentiate MS from NMOSD. We showed that this model, using the Grad-CAM approach, differentiated 
between MS and NMOSD based on white matter lesions. This compact deep learning model may aid in the dif-
ferential diagnosis of MS from NMOSD in clinical practice.

Methods
Patients.  We prospectively evaluated patients who visited the neurology outpatient clinic of Samsung Medi-
cal Center (Seoul, Korea) between May 2016 and May 2020. Patients were enrolled if they had MS or NMOSD, 
and their diagnosis was performed by two experienced neurologists according to the 2017 McDonald criteria 
or the international consensus diagnostic criteria for NMOSD, respectively1,2. We collected brain MRIs dur-
ing clinical follow-up; standardized T2-weighted, three-dimensional T1-weighted turbo field echo, and three-
dimensional fluid-attenuated inversion recovery images were acquired using a 3.0-T MRI scanner (Philips 3.0 T 
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Achieva, Philips Healthcare, Andover, MA, USA) as described previously36. Patients were excluded from the 
study if (a) AQP4 and MOG antibodies were not assessed, (b) they declined to participate in the study, and (c) 
they had a history of brain surgery or medical disorders, including cerebral infarction, intracranial hemorrhage, 
brain tumor or head trauma as these can alter brain MRI findings. We also collected demographic characteristics 
of the enrolled patients, including gender, age, and seropositivity for AQP4 and MOG antibodies.

The study and all experimental protocols were approved by the institutional review board (IRB) of the Sam-
sung Medical Center; all participants provided written informed consent prior to the commencement of the 
study, and all methods were performed in accordance with the relevant guidelines and regulations.

Image preprocessing.  Preprocessing is a set of operations performed on an image to improve its quality 
and make statistical analysis more repeatable and comparable. Image registration is a critical step in various 
biomedical imaging applications. It provides the ability to align one image with another geometrically and is a 
prerequisite for all imaging applications that compare datasets across subjects, imaging modalities, or time37. We 
registered FLAIR images to T1 images. This was done using FMRIB (Functional Magnetic Resonance Imaging 
of the Brain)’s Linear Image Registration Tool (FLIRT). The overall geometry of the brain is unlikely to be altered 
for scans from the same individual, but each scan may have experienced a translation and/or rotation in space. 
We employed rigid-body transformation with 12 degrees of freedom to correct for this. We used Freesurfer 6.0 
to resample the FLAIR image to 256 size and correct intensity non-uniformity38. T1 images were converted 
to Montreal Neurological Institute (MNI) standard space using FMRIB’s Nonlinear Image Registration Tool 
(FNIRT), and coefficient maps were obtained in this process. FLAIR images were converted to MNI standard 
space using FSL’s applywarp function, which applies the FNIRT’s coefficient map to other images. To obtain only 
the brain part without the background, we cropped the FLAIR image to 128 size.

A total of five axial slices were chosen at 20 slice intervals before and after to distinguish multiple sclerosis 
from NMOSD based on the position of the lateral ventricle where lesions are present in both disorders but 
the morphology of the lesions differs (Fig. 2)10. The five axial slice positions were the most similar positions 
presented on the report of Matthews and colleagues9, representing the cortical area, deep white matter area, 

Figure 2.   Example of 2D FLAIR image input data for use in the classification model. (A) Images from two 
patients with multiple sclerosis, (B) images from two patients with neuromyelitis optica spectrum disorder. One 
slice is one channel, so the five images in a row were merged into one input image with five channels.
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lateral ventricle, basal ganglia, and brainstem/cerebellum. We replaced one slice with one channel, resulting in 
a five-channel input image.

Convolutional neural networks.  CNNs is a deep learning method that trains several layers. It is used for 
a variety of computer vision applications and is very efficient39–41. In general, a CNN consists of three main neu-
ral layers: convolutional layers, pooling layers, and fully connected layers. Convolutional layers are at the core 
of a CNN. Convolution is a linear process that, like a conventional neural network, multiplies a set of weights 
with the input in the context of a convolutional neural network. Multiplication is done between an input array 
and a two-dimensional array of weights, known as a filter or a kernel, because the approach was designed for 
two-dimensional input data. A single value is produced by multiplying the filter by the input array once. A two-
dimensional array of output values representing an input filter is produced when the filter is applied to the input 
array more than once. The two-dimensional output array from this operation is known as a feature map. Once 
a feature map has been generated, each value is passed through a nonlinearity. The function of the pooling layer 
is to reduce the dimensions by pooling feature maps. It also collects and enhances the features of the extracted 
image. A fully connected layer is used in a classification task, and a likelihood function is used to calculate the 
likelihood probability of each image class from the fully connected layer. The most probable labels serve as clas-
sifiers throughout the CNN and are output as classification results.

Data augmentation.  High-quality, abundant data is critical in the development of deep learning mod-
els. A deficit of training data can lead to overfitting42. The classification problem addressed in this paper lacks 
sufficient data to provide a deep learning architecture. Therefore, we performed data augmentation based on 
the training set using the following two methods to achieve the desired accuracy. The first data augmentation 
method we used was the RandomHorizontalFlip. RandomHorizontalFlip is a type of image data augmentation 
that flips the input image horizontally with a given probability. The second data augmentation method we used 
is RandomNoise43. RandomNoise is a simple form of data augmentation that adds noise sampled from a normal, 
random distribution. By training a neural network on noisy data, robust neural networks that proficiently gen-
eralize, even on noisy images, can be generated.

Model architecture.  We used a model based on the ResNet CNN model44. There are several types of ResNet, 
such as ResNet-18, ResNet-50, and ResNet-101. In ResNet-n, n is the number of layers in the network, and as n 
increases, the number of computations increases, as well as the performance of the network. We used ResNet-18 
with some changes; ResNet18 is a CNN model with a 72-layer architecture and 18 deep layers. ResNet18 consists 
of one 7 × 7 convolutional layer, two pool layers, eight residual units, and one fully connected layer. Each of the 
residual units contains two 3 × 3 convolutional layers. Here, we changed the input image of ResNet-18 to five 
channels and the output class to two types. Figure 3 shows the modified ResNet architecture used in this study 
to differentiate between MS and NMOSD.

Gradient‑weighted class activation map (Grad‑CAM).  Grad-CAM is a generalization of the class 
activation map (CAM) that finds weights through gradients as follows34,45: 

In the final convolutional layer, we allowed the gradients of any target concept score (logits for any class of 
interest) to flow. Specific aspects in the image for predicting that concept could then be highlighted on a coarse 
localization map by computing a significance score based on the gradients. To express this more technically, we 
computed the gradient of the class C logits concerning the activation maps of the final convolutional layer. Then 
we averaged the gradients over each feature map to determine a significance score as expressed below:

where c is the class of interest, k is the index of the activation map in the final convolutional layer, yc is the score 
for class c before softmax, and Ak is the feature map of the k-th channel of the last CNN layer. The alpha value 
indicates the significance of feature map k for the target class c. The values are then added together after mul-
tiplying each activation map by its significance score. ReLU nonlinearity is also used in the summation to take 
into account only those pixels that positively affect the score of the class of interest.

Statistical analysis.  Clinical characteristics of the enrolled patients are presented with appropriate sum-
mary statistics. Continuous data are shown as means with standard deviations or medians with inter-quartile 
ranges (IQRs). Categorical variables are presented as absolute and relative frequencies. We compared demo-
graphic findings between the two groups (MS versus NMOSD) using the Chi-square test or Fisher’s exact test for 
categorical variables. Student’s t-tests or Mann–Whitney U tests were used to compare continuous variables. The 
performance of our model was evaluated using appropriate classification metrics, namely accuracy, sensitivity, 
specificity, PPV, NPV, and area under the ROC curve. The results of 100 experiments are presented with means 
and 95% confidence intervals (CIs). All statistical analyses were performed using SPSS for Windows version 
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20.0 (IBM, Armonk, NY, USA) or R software version 4.2.1. Statistical significance was defined as a two-tailed 
p-value < 0.05.

Data availability
The datasets used and/or analyzed during the current study can be available from the corresponding author on 
reasonable request.
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