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Introduction: Longitudinal observations of upper limb motor recovery after 
stroke have suggested that certain subgroups may exhibit distinct recovery 
patterns. Here we sought to examine whether the predictive ability for post-
stroke upper limb motor outcomes could be enhanced by applying conventional 
stratification strategies.

Method: For 60 individuals who suffered the first stroke, upper limb motor 
impairment was assessed with the upper extremity Fugl-Meyer assessment 
(UE-FMA) at 2 weeks as a baseline and then 3 months post-stroke. 
Brain structural damage at baseline was assessed by MRI data-derived 
markers ranging from traditional lesion size to the lesion load and to the 
disconnectome. Linear regression models for predicting upper limb motor 
outcomes (UE-FMA score at 3 months post-stroke) based on baseline 
upper limb motor impairment (UE-FMA score at 2 weeks post-stroke), brain 
structural damage, and their combinations were generated, and those with 
the best predictive performance were determined for individual subgroups 
stratified according to initial impairment (severe and non-severe), lesion 
location (cortical and non-cortical), and neurophysiological status (motor 
evoked potential-positive and motor evoked potential-negative).

Results: The best predictions were made by baseline upper limb motor 
impairment alone for subgroups with less functional impairment (non-
severe) or less structural involvement (non-cortical), but by the combination 
of baseline upper limb motor impairment and brain structural damage 
for the other subgroups. The predictive models tailored for subgroups 
determined according to initial impairment and neurophysiological status 
yielded a smaller overall error than that for the whole group in upper limb 
motor outcome predictions.

Discussion: The predictive ability for upper limb motor outcomes could 
be enhanced beyond the one-size-fits-all model for all individuals with 
stroke by applying specific stratification strategies, with stratification 
according to initial impairment being the most promising. We expect that 
predictive models tailored for individual subgroups could lead closer to the 
personalized prognosis of upper limb motor outcomes after stroke.
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1 Introduction

Numerous investigations have attempted to understand patterns of 
functional recovery after stroke, yielding longitudinal observations that 
have revealed recovery patterns regarding the time-dependency of 
functional recovery. With respect to the understanding of post-stroke 
recovery patterns, there appear to be some concerns; among others, 
identifying distinct recovery patterns to address inter-individual 
variability in recovery courses and linking the identified recovery 
patterns with markers collected at baseline to predict specific recovery 
patterns for individuals to follow appear to be the most pressing.

These concerns have led to the development of models enabling 
individualized outcome predictions. As artificial intelligence approaches 
become increasingly available, various machine learning algorithms ranging 
from linear regression to deep learning have been applied to demographic, 
clinical, electrophysiological, and neuroimaging data, as well as their 
combinations, as inputs, suggesting the potential of multidimensional 
markers for more accurate outcome predictions (for reviews, see (1, 2)).

Wide applications of the proportional recovery rule, notably to 
upper limb motor outcomes (3, 4), suggest that the severity of initial 
impairment affects the degree of outcomes. Considering confounders 
of the proportional recovery rule, however, initial impairment appears 
to explain a smaller amount of the variance in recovery than originally 
assumed (5). Furthermore, the existence of individuals not fitted to 
the proportional recovery rule indicates that outcomes may not 
be well predicted by initial impairment alone for some subgroups.

In this contribution, we employed two main strategies to generate 
models for predicting upper limb motor outcomes after stroke. First, 
as a follow-up to our previous study (6), we recognized the potential of 
lesion-induced brain structural damage in addition to baseline upper 
limb motor impairment. Among lots of markers that can be obtained 
from neuroimaging, we believe that lesion-induced brain structural 
damage could best characterize individual strokes, so we considered 
measures ranging from traditional lesion size to the lesion load and to 
the disconnectome as markers. Second, we assumed that predictive 
performance could be  improved by generating models specific to 
distinct recovery patterns. Since distinct recovery patterns that best 
describe inter-individual variability in recovery courses remain unclear, 
we  hypothetically considered conventional stratification strategies, 
such as the severity of initial impairment (7, 8), the location of lesions 
(9, 10), and neurophysiological status (11, 12), as potentially reflecting 
inter-individual variability in upper limb motor recovery.

Among the different combinations of baseline upper limb motor 
impairment and brain structural damage, we  searched for the best 
predictive models for individual subgroups assigned according to the 
conventional stratification strategies. We sought to determine whether 
predictive models of upper limb motor outcomes for stratified subgroups 
could yield a reduction in the overall error compared with that for the 
whole group. We  hypothesized that predictive performance could 
be  improved for specific stratification strategies if they could at least 
partially reflect different recovery courses across individuals.

2 Methods

2.1 Participants

Sixty individuals (59.4 ± 12.5 years, 30 women) who suffered their 
first stroke and had a course of disease within 2 weeks (2 W) to 

3 months (3 M) post-stroke participated in this study. They included 
those (i) with unilateral supratentorial lesions from ischemic or 
hemorrhagic stroke, (ii) aged between 18 and 80 years, and (iii) who 
were conscious and lacked indications of dementia or mental 
impairment. The absence of cognitive impairment for all individuals 
was checked by using the Mini-Mental State Examination as a 
screening instrument. The individuals’ demographic and clinical 
characteristics are summarized in Table 1, with individual values 
listed in Supplementary Table S1. Lesions were manually segmented 
by an experienced physician, with their reliability checked by another 
experienced physician. An overlap map of the lesions is depicted in 
Figure  1. Seventy-seven healthy individuals (46.9 ± 16.5 years, 40 
women) without any history of neurological or psychiatric diseases 
served as age- and sex-matched normative controls. Written informed 
consent was obtained from all participants in accordance with the 
Declaration of Helsinki and its later amendments, and the study was 
approved by the local institutional review board.

2.2 Stroke rehabilitation therapy

The individuals with stroke received comprehensive rehabilitation 
therapy to restore motor functions from the time of study participation 
until 3 months post-stroke. They participated in rehabilitation therapy 5 
times a week in a rehabilitation hospital, with physical and occupational 
therapy received twice a day, each in the morning and afternoon, for a 
total treatment time of 4 h per day. Physical therapy consisted of gait 
training, strength strengthening exercises, balance training, and joint 
range of motion exercises, while occupational therapy included training 
for activities of daily living, hand function movement exercises, and 
swallowing facilitation therapy. For the individuals with aphasia or 
dysarthria, speech therapy was added to the program.

2.3 Assessment of upper limb motor 
impairment

For the individuals with stroke who suffered motor impairment 
of the contralesional upper limb, the degree of upper limb motor 
impairment at 2 W and 3 M after stroke was assessed using the upper 
extremity Fugl-Meyer assessment (UE-FMA) (13) by a trained 
occupational therapist blinded to the individuals’ severity and not 
involved in administering the interventions. The UE-FMA score was 
based on direct observations of performance, such that each item was 
scored based on one’s ability to complete the item using a three-point 
ordinal scale (0, unable to perform; 1, partially done; and 2, fully 
done). The UE-FMA score at 2 W was regarded as baseline upper 
limb motor impairment and the UE-FMA score at 3 M was 
considered as upper limb motor outcomes. The average UE-FMA 
scores were 25.2 ± 18.2 at 2 W and 39.9 ± 19.8 at 3 M against a full 
score of 66.

2.4 Measurement of motor evoked 
potentials

Motor evoked potentials (MEPs) were measured for 47 of the 
60 individuals; the remaining individuals were unable to meet the 
schedules for MEP assessment. By using a BiStim2 transcranial 
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magnetic stimulation (TMS) system (Magstim, Carmarthenshire, 
UK) and a 70 mm figure-eight coil, a single-pulse TMS was 
repeatedly applied to the optimal scalp position to determine each 
individual’s resting motor threshold, which was defined as the 
lowest stimulation intensity required to produce an MEP peak-to-
peak amplitude ≥50 μV in 5 of 10 consecutive trials (14). By 
recording MEPs via surface electrodes from the contralateral first 
dorsal interosseous muscle, the absence of MEPs was defined 
if no MEP appeared after three consecutive discharges at full 
power (15).

2.5 Acquisition and analysis of MRI data

Using an Achieva 3 T MRI system (Philips Healthcare, Best, 
Netherlands), structural MRI (sMRI) and diffusion-weighed MRI 
(dMRI) data were collected for the individuals. For sMRI data, a 
T1-weighted volume image was acquired in axial planes with the 
following parameters: number of slices = 124, slice thickness = 1.60 mm, 
matrix size = 512 × 512, and in-plane resolution = 0.47 mm × 0.47 mm. 
For dMRI data, 46 volume images comprising 45 with diffusion 
weighting at b value = 1,000 s/mm2 and one without diffusion 

TABLE 1 Summary characteristics of participants.

Individuals
with stroke

(n  =  60)

Normative
controls
(n  =  77)

Statistical
comparison

Demographics

Age (years)

(mean ± SD)

28 ~ 80

(59.4 ± 12.5)

22 ~ 77

(46.9 ± 16.5)
NS

Sex Men:women = 30:30 Men:women = 37:40 NS

Lesion side
Hemispheric

motor dominance

Dominant:non-dominant

= 27:33
n/a n/a

Upper limb

motor impairment

UE-FMA score

(mean ± SD)

2 W
4 ~ 63

(25.2 ± 18.2)
n/a n/a

3 M
4 ~ 66

(39.9 ± 19.8)
n/a n/a

Stratification

Initial

impairment

Severe:non-severe

= 33:27
n/a n/a

Lesion

location

Cortical:non-cortical

= 26:34
n/a n/a

Neurophysiological

status

MEP-negative:MEP-positive

= 14:33
n/a n/a

Proportional

recovery

Non-fitted:fitted

= 22:38
n/a n/a

For individuals with stroke, the dominant/non-dominant lesion side indicates that a lesion is located in the motor dominant/non-dominant hemisphere.
UE-FMA, upper extremity Fugl-Meyer assessment; 2 W, two weeks after stroke; 3 M, three months after stroke; MEP, motor evoked potential; SD, standard deviation; and NS, non-significant.

FIGURE 1

Distribution of lesions for individuals with stroke. Each individual’s lesion was transformed to the standard space, oriented to be located on the same 
side, and then superimposed. The red–yellow colour maps the voxel-wise overlap ratio over the individuals. IL, ipsilesional hemisphere.
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weighting were acquired in axial planes with the following parameters: 
number of slices = 60, slice thickness = 2.25 mm, matrix size = 112 × 112, 
and in-plane resolution = 1.96 mm × 1.96 mm.

Preprocessing of the dMRI data was conducted using tools in FSL1 
in such a way that eddy current-induced distortion and head movement 
were corrected and the skull was removed before modelling the diffusion 
tensor at each voxel. White matter (WM) tractography was performed 
for the preprocessed dMRI data to reconstruct WM fibers over the whole 
brain by using tools in MRtrix3.2 For registration between the dMRI 
native space and the standard space, a deformation field was estimated 
for the sMRI data coregistered to the dMRI data by using tools in SPM12.3

2.6 Assessment of brain structural damage

As lesion-induced brain structural damage that could reflect an 
effect of a lesion on the CST or whole brain, we considered three types 
of measures as listed in Table 2, each identified by applying a specific 
damage map to a region of interest (ROI). Damage maps included (i) a 
weighted map of fractional anisotropy (FA) (16) derived from the 
diffusion tensor estimated using the post-stroke individuals’ dMRI data, 
(ii) a binary map of a lesion identified using the post-stroke individuals’ 
sMRI data, and (iii) a weighted map of a structural disconnectome 
estimated using the normative controls’ dMRI data, as an ensemble of 
structural connections passing through a lesion (17, 18). Given a lesion 
identified for an individual with stroke, after the lesion was transformed 
to the dMRI data native space of a normative control, WM fibers 
passing through the lesion were selected among whole brain WM fibers 
estimated for the normative control. The distribution of voxel-wise 
counts of WM fibers was normalized to the maximum count and 
transformed to the standard space, and its average over the normative 
controls served as a structural disconnectome from the lesion.

ROIs included the (i) CST and (ii) whole brain. The territories of 
the CST were determined using either the post-stroke individuals’ 
dMRI data (patient CST) or the normative controls’ dMRI data 
(control CST) (19). For both patient and control CSTs, WM fibers 
commencing with the precentral gyrus, progressing to the posterior 
limb of the internal capsule (PLIC), and reaching the pons ipsilateral 
to the precentral gyrus were selected among whole brain WM fibers. 
The precentral gyrus was defined based on the respective label of the 
Destrieux atlas (20), and the PLIC and pons were delineated manually. 
Of the selected WM fibers, those extending into the cerebellum or 
contralateral hemisphere were excluded. The distribution of voxel-
wise counts of WM fibers was normalized to the maximum count and 
then transformed to the standard space. The patient CST was 
identified for each individual with stroke, while the control CST was 
determined as the average of the CSTs of the normative controls.

A total of six measures of brain structural damage, including two 
CST disintegrity measures, two CST damage measures, and two brain 
damage measures, were evaluated for the individuals with stroke at 
baseline. CST disintegrity measures, including patient CST FA 
asymmetry and control CST FA asymmetry, were acquired by applying 
an FA map to the patient or control CST, averaging voxel-wise FA 

1 https://fsl.fmrib.ox.ac.uk/

2 https://www.mrtrix.org/

3 http://www.fil.ion.ucl.ac.uk/spm/

values in each hemisphere, and computing the asymmetry of the mean 
FA values between the two hemispheres: (FAcontralesional - FAipsilesional)/
(FAcontralesional + FAipsilesional). CST damage measures, including the CST 
lesion load and CST disconnectome load, were obtained by applying 
a lesion or disconnectome map to the control CST and computing the 
weighted volume of the overlap. Brain damage measures, including 
lesion volume and disconnectome volume, were acquired by applying 
a lesion or disconnectome map to the whole brain and computing the 
weighted volume of the overlap. To check whether there was 
multicollinearity between the six measures of brain structural damage, 
partial correlation between them was assessed after controlling for the 
individuals’ age, sex, and hemispheric motor dominance.

2.7 Subgroup stratification

The individuals with stroke were allocated to subgroups according 
to (i) initial impairment, (ii) lesion location, and (iii) neurophysiological 
status. The severity of initial upper limb motor impairment was 
evaluated in terms of the UE-FMA score at 2 W. Among the 60 
individuals, 33 with a score of 20 or lower were classified as severe (13), 
whereas the other 27 with a score higher than 20 were classified as 
non-severe. The criterion for the distribution of lesion location was 
determined according to whether lesions involved cortical areas beyond 
subcortical areas. Among the 60 individuals, 26 with lesions that 
involved both subcortical and cortical areas were classified as cortical, 
whereas the other 34 with lesions that involved subcortical areas only 
were classified as non-cortical. Neurophysiological status was assessed 
in terms of MEPs elicited by TMS. Among the 47 individuals for whom 
MEPs were evaluated, 14 without MEPs were classified as MEP-negative, 
whereas the other 33 with MEPs recorded in either contralateral target 
muscle were classified as MEP-positive.

For comparison with the stratification strategies considered above, 
the individuals were also assigned to subgroups according to whether 
they met the proportional recovery rule. Defining a model residual as 
the difference between the predicted change in the UE-FMA score 
according to the proportional recovery rule ((66 - UE-FMA score at 
2 W) × 0.7) and the observed change in the UE-FMA score (UE-FMA 
score at 3 M - UE-FMA score at 2 W), larger model residuals indicated 
recovery-atypical individuals showing much poorer upper limb motor 
outcomes than predicted by the proportional recovery rule (21). 
Among the 60 individuals, 22 with a model residual of 20 or larger 
were classified as non-fitted (21), whereas the other 38 with a model 
residual smaller than 20 were classified as fitted, as displayed in the 
histogram of model residuals in Fig. S1.

2.8 Construction and comparison of 
predictive models

We used multiple linear regression to generate models for predicting 
upper limb motor outcomes. That is, upper limb motor outcomes 
served as the response variable and inputs including baseline upper limb 
motor impairment and brain structural damage served as predictor 
variables. Specifically, three kinds of models were generated according 
to inputs employed: (i) baseline upper limb motor impairment alone, 
(ii) brain structural damage alone, and (iii) a combination of baseline 
upper limb motor impairment and brain structural damage. In all the 
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models, the individuals’ age, sex, and hemispheric motor dominance 
were included as confounding covariates. Model parameters were 
estimated by using the least square approximation without involving 
regularization. This model construction was repeated for the whole 
group and for each stratified subgroup.

To assess the predictive ability of each model, the in-sample error 
and the out-of-sample or generalization error in predicting upper 
limb motor outcomes were measured by the squared error per 
sample, that is, the mean squared error (MSE). While the in-sample 
error was estimated for samples already seen in the training phase, 
the generalization error was estimated for those unseen in the 
training phase. Specifically, the generalization error was measured via 
leave-one-out cross-validation (CV), in which a squared error was 
computed for each left-out sample when the remaining samples were 
used to estimate the model parameters. A model’s superiority was 
primarily determined by a smaller MSE in CV in terms of the 
generalization error since the robustness of a model to a range of 
unseen samples beyond those used for estimating model parameters 
would be  crucial for assessing the model’s practical applicability. 
Moreover, the goodness of fit of each model was evaluated by the 
coefficient of determination, R2, and the trade-off between the 
goodness of fit and model complexity was evaluated by the corrected 
Akaike information criterion (AICc) (22).

Between nested models, specifically between a reduced model 
composed of baseline upper limb motor impairment alone and an 
extended model comprising a combination of baseline upper limb 
motor impairment and brain structural damage, the likelihood-ratio 
χ2 test was carried out to assess whether adding brain structural 
damage as an additional predictor variable could significantly improve 
the goodness of fit. In addition, between different models formed by 
a combination of baseline upper limb motor impairment and brain 
structural damage, a difference in the goodness of fit was evaluated by 
comparing R2 values. In all statistical inferences, statistical significance 
was identified when a p value was less than 0.05, specifically corrected 
for multiple comparisons by a false discovery rate approach in the case 
of considering multiple models.

3 Results

3.1 Correlation between brain structural 
damage measures

The six measures of brain structural damage were highly 
correlated with each other (p < 0.001 for all pairs), with correlation 
coefficients ranging from 0.525 to 0.920 (Fig. S2). The average 

correlation coefficients between each and the others were 0.766, 0.803, 
0.839, 0.698, 0.727, and 0.837 for the measures as ordered in Table 2, 
showing that the CST lesion load was the most correlated, whereas the 
CST disconnectome load was the least correlated on average. 
Specifically, the correlation coefficient was 0.920 between the two CST 
disintegrity measures, 0.809 between the two CST damage measures, 
and 0.862 between the two brain damage measures.

3.2 Predictive models for stratified 
subgroups

Since generally high correlation between the six measures of brain 
structural damage indicated multicollinearity between them, each of 
the measures was individually employed as a predictor variable, 
producing a total of 13 multiple linear regression models, as listed in 
Supplementary Table S2, for predicting upper limb motor outcomes. 
The statistics of the models are listed in Supplementary Table S3. In all 
models constructed, baseline upper limb motor impairment was a 
statistically significant predictor when it was combined with brain 
structural damage as well as when it was employed alone. When 
baseline upper limb motor impairment was combined with brain 
structural damage, brain structural damage was a statistically 
significant predictor for specific subgroups and, in connection with 
that, adding brain structural damage to baseline upper limb motor 
impairment could offer, but not always, a significant improvement in 
the goodness of fit. In addition, between the models comprised of a 
combination of baseline upper limb motor impairment and brain 
structural damage, the goodness of fit was not significantly different 
as specified in Supplementary Table S4.

The best predictive models developed for the whole group and for 
subgroups specified according to the different stratification strategies are 
summarized in Table 3. While the combination of baseline upper limb 
motor impairment and the CST lesion load (B + LL) composed the best 
predictive model with the greatest R2 (R2 = 0.672) and the smallest AICc 
(AICc = 474.253) as well as the smallest MSE in CV (MSE = 152.572) for 
the whole group, the best predictive models were variable between 
stratified subgroups. Whereas the best predictive models consisted of 
baseline upper limb motor impairment alone (B) in the non-severe 
subgroup determined by initial impairment and in the non-cortical 
subgroup determined by lesion location, the combination of baseline 
upper limb motor impairment and the CST disconnectome load (B + DL) 
formed the best predictive model for the severe subgroup determined by 
initial impairment, for the cortical subgroup determined by lesion 
location, and for the MEP-negative subgroup determined by 
neurophysiological status.

TABLE 2 List of brain structural damage measures.

Type Damage map ROI Structural damage measure

CST disintegrity
FA Patient CST Patient CST FA asymmetry

FA Control CST Control CST FA asymmetry

CST damage
Lesion Control CST CST lesion load

Structural disconnectome Control CST CST disconnectome load

Brain damage
Lesion Whole brain Lesion volume

Structural disconnectome Whole brain Disconnectome volume

Each measure was defined by applying a specific damage map to a region of interest (ROI).
CST, corticospinal tract; and FA, fractional anisotropy.
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3.3 Overall error of predictive models for 
stratified subgroups

In predicting upper limb motor outcomes, having set the MSE of 
the best predictive model generated for the whole group at 100%, the 
best predictive models constructed via subgroup stratification 
according to initial impairment, lesion location, and 
neurophysiological status yielded overall MSEs ranging from 85.8 to 
106.6% for the generalization error and those ranging from 75.5 to 
96.7% for the in-sample error, as listed in Table 3, when the overall 
MSE was computed by weighting the MSEs of predictive models for 
stratified subgroups by the number of individuals in each subgroup. 
By comparison, for subgroups determined according to proportional 
recovery, as reference for those exhibiting different recovery courses, 
the best predictive model yielded an overall MSE reduced up to 30.4% 
for the generalization error and up to 26.8% for the in-sample error.

4 Discussion

In predicting upper limb motor outcomes in stroke recovery, 
we showed that predictive models tailored for subgroups of individuals 
with stroke could be furnished by applying conventional stratification 
strategies. While baseline upper limb motor impairment alone composed 
better predictive models for the non-severe subgroup determined by 
initial impairment and the non-cortical subgroup determined by lesion 
location, a combination of baseline upper limb motor impairment and 
brain structural damage formed superior predictive models for the other 
subgroups as well as for the whole group. We  demonstrated that 
predictive models tailored for subgroups based on specific stratification 
strategies, such as initial impairment and neurophysiological status, could 
lead to reductions in the overall error in upper limb motor outcome 
predictions compared with the predictive model for the whole group.

An increasing number of studies of upper limb motor recovery 
after stroke have suggested numerous markers sourced from various 
clinical data, not least of which are upper limb motor impairment and 
neuroimaging-based brain structural damage evaluated at baseline 
(23), in predicting subsequent upper limb motor outcomes. While 

initial impairment is a well-known marker of outcomes several 
months later (24, 25), we showed that a combination of baseline upper 
limb motor impairment and brain structural damage could generally 
provide an improvement in predictive ability compared with the use 
of baseline upper limb motor impairment alone. Considering the 
relevance of proportional recovery to lesion-induced CST disintegrity 
(3, 21, 26) and CST damage (7), brain structural damage appears to 
have the potential to improve the predictive ability when used together 
with baseline upper limb motor impairment (6).

For the non-severe subgroup determined by initial impairment 
and the non-cortical subgroup determined by lesion location, upper 
limb motor outcomes were best predicted by baseline upper limb 
motor impairment alone, specifically in terms of the generalization 
error. Considering that variability in recovery courses could 
be associated with the heterogeneity of lesion characteristics between 
individuals (9, 10, 27–29), structurally or functionally less impairment 
would induce smaller inter-individual variability; hence, the greatest 
robustness to variations in upper limb motor outcome predictions 
could be  achieved by the simpler predictive model composed of 
baseline upper limb motor impairment alone for the subgroups.

As the virtue of upper limb motor outcome predictions for stratified 
subgroups, we showed that predictive models tailored for subgroups 
determined according to specific stratification strategies could yield a 
smaller overall error compared with that for the so called one-size-fits-all 
model for all individuals with stroke. Of the stratification strategies 
considered here, subgroup stratification according to initial impairment 
appears to be  most promising in that the predictive models for the 
stratified subgroups yielded smaller MSEs in terms of the generalization 
error for every subgroup than that for the one-size-fits-all model. 
Considering that many individuals not fitted to the proportional recovery 
rule are those with initially severe impairment (30), subgroup stratification 
according to initial impairment appears to partly reflect different recovery 
courses as implied by proportional recovery. In subgroup stratification 
according to neurophysiological status, the MSE in terms of the 
generalization error was greatly reduced for the MEP-positive subgroup, 
but not for the MEP-negative subgroup, indicating much larger variability 
in recovery courses in the absence of MEPs (31) in contrast to the robust 
predictive value in the presence of MEPs (12).

TABLE 3 Predictive ability of the best predictive models developed for the whole group and for stratified subgroups.

Subgroup Generalization error In-sample error

Best
model

MSE Overall
MSE

Best
model

MSE Overall
MSE

All individuals B + LL 152.572
152.572

(100%)
B + LL 140.510

140.510

(100%)

Initial

impairment

Severe B + DL 149.457 130.982

(85.8%)

B + DL 122.040 106.068

(75.5%)Non-severe B 108.402 B + PF 86.547

Lesion

location

Cortical B + DL 193.887 162.572

(106.6%)

B + DL 161.464 135.831

(96.7%)Non-cortical B 138.802 B + DV 116.230

Neurophysiological

status

MEP-negative B + DL 156.777 112.877

(96.1%)

B + DL 128.301 92.011

(89.6%)MEP-positive B + DV 9.398 B + DV 6.470

Proportional

recovery

Non-fitted B + PF 43.753 46.434

(30.4%)

B + PF 31.732 37.648

(26.8%)Fitted B 47.986 B + DL 41.073

A smaller mean squared error (MSE) indicates better predictive ability.
CV, cross-validation; MEP, motor evoked potential; B, baseline upper extremity Fugl-Meyer assessment (UE-FMA) score; B + PF, baseline UE-FMA score + patient CST FA asymmetry; B + LL, 
baseline UE-FMA score + CST lesion load; B + DL, baseline UE-FMA score + CST disconnectome load; and B + DV, baseline UE-FMA score + disconnectome volume.
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In upper limb motor recovery studies that considered follow-up 
outcomes as the response variable to be predicted, differing ability in 
outcome predictions according to subgroups has been often presented. 
For example, Feng and colleagues (7) showed that baseline upper limb 
motor impairment was a marker comparable to the CST lesion load in 
predicting upper limb motor outcomes for the whole sample, but not 
for a subgroup with initially severe impairment (UE-FMA score at 
baseline ≤ 10). Such changing contributions of a certain marker to 
predicting outcomes appear to suggest a need for predictive models for 
stratified subgroups as a possible way to improve predictive 
performance, as well as supporting the notion of grossly different 
recovery patterns across individuals. In this respect, we note that our 
unique attempt was to generate predictive models for individual 
subgroups assigned according to hypothetical differences in recovery 
patterns, while many of previous studies aimed to predict different 
recovery patterns themselves via the representation of the response 
variable by categories of outcomes, for example, two recovery patterns 
in the proportional recovery rule (32) and four recovery patterns in the 
Predict Recovery Potential algorithm (33). Our approach may find 
new applications as distinct recovery patterns that better describe 
inter-patient variability in recovery courses could be  identified in 
the future.

This study has some limitations that should be accounted for in 
future studies. First, the predictive models suggested here are not yet 
considered conclusive primarily due to the small sample size. Subgroup 
stratification according to initial impairment appears to be a reasonable 
starting point for further development of predictive models for 
stratified subgroups, but it would be necessary to refine the stratification 
strategy and validate the performance of the predictive models against 
a larger sample for practical application to prognostic predictions in 
clinical practice. Second, although here we considered at most two 
subgroups for stratification strategies partly because of the limited pool 
of post-stroke individuals, the number of subgroups could vary greatly. 
For instance, by considering that the presence of MEPs could be a 
useful marker particularly for individuals with initially severe 
impairment (12), initial impairment and neurophysiological status 
might be applied together to provide subdivided subgroups according 
to a combination of stratification strategies. Third, more markers than 
those considered here could be added to establish more robust and 
accurate outcome predictions. High-dimensional markers from 
demographic, clinical, electrophysiological, and neuroimaging data 
would increase the opportunity to apply more complex artificial 
intelligence approaches and eventually render individualized outcome 
predictions practically feasible.

5 Conclusion

Despite growing momentum to develop precision medicine for 
stroke, the phenotypic diversity of stroke appears to be  a main 
challenge specifically in predicting functional outcomes after stroke. 
In the current study, we  put forward the value of subgroup 
stratification in developing prognostic predictive models of upper 
limb motor outcomes. We suppose that predictive models for stratified 
subgroups could serve as an intermediate step towards more complete 
precision medicine for personalized prognosis of upper limb motor 
outcomes, thus paving the way for promoting clinical application of 
such prognostic predictive models in stroke recovery.
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